
Understanding and Configuring SPI Communication

for Raspberry Pi and Shield Integration

Jakob Foltyn, Jakob Estermann, Maximilian

Wagner, Leonhard Woransky

Höhere Technische Bundeslehranstalt Wien West

(Federal Technical Secondary College)

Department of Electronics and

Technical Informatics

1160 Vienna, Austria

Author’s email: jakob.estermann2005@gmail.com

Abstract—Every robot in Botball has a Wombat controller,

traditionally utilized without much scrutiny regarding its

construction or the Raspberry Pi's management of connections.

Our study aimed to investigate and understand these aspects,

focusing on the communication process between the shield and

Raspberry Pi. This paper delves into how this communication is

established and explores the basic interactions with digital/analog

ports, motors, and servos. Additionally, we developed a Python

library for basic control, further enhancing our understanding

and practical implementation of these mechanisms.

I. INTRODUCTION

To establish successful communication between the

Raspberry Pi and the Shield, the electrical signals at the

hardware level had to be analyzed. To achieve this, an adapter

was created to connect between the Raspberry Pi and the

Shield. This adapter allows for tapping and measuring the

relevant communication ports without permanently adding

hardware through soldering or gluing wires. The setup and

operation of the Shield are further elucidated in Chapter V,

WOMBAT CONTROLLER.

Fig. 1: measurement adapter for communication ports

Using an ohmmeter, it was determined that the Shield

manufacturers chose SPI (Serial Peripheral Interface) as the

communication protocol. However, the specifics of the

communication and data transfer were unknown.

To investigate this, the individual SPI ports of the adapter

were connected to an Analog Discovery device. The Analog

Discovery, a USB-powered tool, allows for the creation and

testing of analog and digital circuits in various environments,

replicating the functions of traditional benchtop instruments.

Its user-friendly software can convert transmission protocols

directly into binary or decimal numbers.

This system allowed us to understand the data transfer

method: each successful transmission sends 89 bytes.

II. TRANSISSION

A write or read operation is always initiated with the same

start and end.

• The start of a transmission is signaled by a start byte

representing the character (data type Char) 'J'.

• Following this is the first byte representing the SPI

version.

• The second byte is a sequential number that increments

with each data exchange.

• The final 88 byte represent the character 'S' and

symbolize the end of a transmission.

• There are manufacturer-defined register addresses;

however, to make the program more organized and

universal, the first register address (base register

address) of each register block is used. Using the port

number (in certain cases, the port number may need to

be multiplied by a factor) allows the correct address to

be determined. To enable this, address numbers within a

register block are sequentially numbered. The base

register addresses are marked in the register address

table.

Purpose Register description
Register

address
Description

d
ig

ital in
p

u
ts / o

u
tp

u
ts

REG_RW_DIG_IN_H 3
inputs

REG_RW_DIG_IN_L 4

REG_RW_DIG_OUT_H 5
output

REG_RW_DIG_OUT_L 6

REG_RW_DIG_OE_H 9
input / output

definition
REG_RW_DIG_OE_L 10

an
alo

g
 in

p
u

ts

REG_RW_ADC_0_H 11
ADC: 1

REG_RW_ADC_0_L 12

REG_RW_ADC_1_H 13
ADC: 2

REG_RW_ADC_1_L 14

REG_RW_ADC_2_H 15
ADC: 3

REG_RW_ADC_2_L 16

REG_RW_ADC_3_H 17
ADC: 4

REG_RW_ADC_3_L 18

REG_RW_ADC_4_H 19 ADC: 5

mailto:lindorfer.konstantin@student.htlwrn.ac.at

REG_RW_ADC_4_L 20

REG_RW_ADC_5_H 21
ADC: 6

REG_RW_ADC_5_L 22

m
o
to

rs

REG_RW_MOT_0_B3 42 BEMF: 1

REG_RW_MOT_0_B3 46 BEMF: 2

REG_RW_MOT_0_B3 50 BEMF: 3

REG_RW_MOT_0_B3 54 BEMF: 4

REG_RW_MOT_MODES 58
motor states

REG_RW_MOT_DIRS 59

REG_RW_MOT_0_SP_H 62
motor speed: 1

REG_RW_MOT_0_SP_L 63

REG_RW_MOT_1_SP_H 64
motor speed: 2

REG_RW_MOT_1_SP_L 65

REG_RW_MOT_2_SP_H 66
motor speed: 3

REG_RW_MOT_2_SP_L 67

REG_RW_MOT_3_SP_H 68
motor speed: 4

REG_RW_MOT_3_SP_L 69

serv
o

s

REG_RW_MOT_SRV_ALLSTOP 61 servo state

REG_RW_SERVO_0_H 78
servo position: 1

REG_RW_SERVO_0_L 79

REG_RW_SERVO_1_H 80
servo position: 2

REG_RW_SERVO_1_L 81

REG_RW_SERVO_2_H 82
servo position: 3

REG_RW_SERVO_2_L 83

REG_RW_SERVO_3_H 84
servo position: 4

REG_RW_SERVO_3_L 85

Tbl. 1: register address table.

III. WRITING PROCESS

• The data to be transferred can consist of different

numbers of bits. There are distinctions between 8, 16,

and 32-bit transfers.

• The third byte specifies the number of registers to be

written, with each register capable of storing 8 bits or 1

byte. This value ranges between one and four. This is

indicated in dark blue in the figure.

• Following this, up to eight bytes alternate between data

and register addresses, which can be observed in the

yellow-marked section in the figure. First, if necessary,

Fig. 2: Writing process diagram

the bits to be transferred are divided into bytes. Then, the

fourth byte contains the corresponding register address.

The fifth byte represents the most significant bits starting

from the MSB. If more than eight bits are transferred, the

process alternates between register address and data,

incrementing the register address by one, and dividing the

data into eight-bit blocks.

• Any additional bytes up to the last byte are disregarded

during the writing process and set to zero, as indicated

with white in the figure.

IV. READING PROCESS

• Eight, 16, and 32-bit data can also be retrieved.

• All bytes between the third and the 88th are filled with

zeros, as indicated by white in the figure, signaling the

shield to send the data. However, no specific register is

explicitly requested; instead, all registers are queried and

transmitted. To evaluate the data, the register addresses

calculated with the port are needed again, allowing the

data to be correctly assembled and read. The register

address represents the index, i.e., the position of the data

byte among the 89 bytes. If more than 8 bits are expected,

the register address must be incremented by one again to

obtain the corresponding data byte. Depending on the

situation, one to four bytes per register address can be

obtained, which can then form a 16 or 32-bit number.

Fig. 3: Reading process diagram

byte 0. 1. 2. 3. - 87. 88.

J version
sequence

number
0 S

start stop

byte 0. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. - 87. 88.

J version
sequence

number

number of

register

register

address

register

value

register

address

register

value

register

address

register

value

register

address

register

value
0 S

start
1 register

8 bit

7. - 0.

bit
0 0 0 0 0 0 stop

2 register

16 bit

15. - 7.

bit

7. - 0.

bit
0 0 0 0

4 register

32 bit

31. - 23.

bit

23. - 15.

bit

15. - 7.

bit

7. - 0.

bit

V. WOMBAT CONTROLLER

Fig. 4: Wombat Controller ports

type quantity voltage description

digital inputs / outputs
(DIGITAL)

10 3,3V The top row contains the

actual connections, while
the second row has Vcc

and the bottom row has

GND.

analog inputs (ANALOG) 6 3,3V

servos (SERVOS) 4 5V

motors (MOTORS) 4 5V

The top and bottom rows

contain the connections,

while the middle row is
not connected.

Tbl. 2: Wombat Controller ports

Fig. 5: Wombat Controller backside

Fig. 6: Wombat Controller frontside

Fig. 7: Wombat Controller display

The Wombat controller consists of a Raspberry Pi 3B, which

handles all program-related tasks including writing, storing,

and executing programs, along with a shield responsible for

controlling the ports and display. The shield is connected to the

Raspberry Pi's pins. To power the shield, there is a battery

connector. This requires a circuit to regulate the battery voltage

and make it usable for the shield.

The shield includes an STM32 microcontroller that manages

all functionality. When the Raspberry Pi communicates with

the shield, it does so via SPI with the microcontroller.

The microcontroller itself does not control all ports; it

handles digital and analog ports. Servos and motors are

controlled by separate driver ICs.

For the display, an IC is needed to convert the HDMI signal

for the display. Additionally, the display requires its own

power supply circuit. Input is facilitated by a touch matrix,

providing analog values for the X and Y axes, which are

converted to I2C and fed to the microcontroller via an IC.

Furthermore, the shield features a gyroscope sensor that can

be used for positioning.

VI. CONTROL OF SENSORS AND

ACTUATORS

A. Digital inputs and outputs

There are ten different ports (0 - 9). Since each bit represents

a port, only ten bits starting from the LSB are used. The highest

six bits are not needed and are therefore set to zero. First, the

port type must be defined. By default, all ports are configured

as inputs. For this, the registers are read, returning a 16-bit

binary number. Then, the following expression sets the

corresponding bit for the port to zero or one. Finally, the

modified binary number is written back to the appropriate

register.

if output:

 outputs |= (1 << port)

else:

 outputs &= ~(1 << port)

1) Inputs

For this, the corresponding port must be configured as an

input. Then, the relevant registers are read, and the input value

from this port is extracted using the following expression.

2) Outputs

For this, the corresponding port must be configured as an

output. Then, the registers of the output state are read,

returning a 16-bit binary number. This number is modified

and then written back to the register.

B. Analog inputs

There are six different ports (0 - 5). Here, only the

appropriate registers are read, which provide a 16-bit binary

number. However, the built-in analog-to-digital converters

only have a resolution of twelve bits. Therefore, the highest

four bits are not used and are set to zero.

C. Motors

There are four different ports (0 - 3). Here, there is an eight-

bit register for mode (active: 1, inactive: 0), an eight-bit

register for direction (forward: 1, backward: 2, passive stop: 0,

active stop: 3), and a 16-bit register for speed (0 - 1500). First,

the mode must be set, where two bits represent the mode of

each motor. The register returning an eight-bit binary number

is read for this purpose. Then, the following expression sets

the corresponding bits for the port. Finally, the modified

binary number is written back to the appropriate register.

First, the direction must be determined, where again two bits

represent each motor. The register returning an eight-bit

binary number is read for this purpose. Then, the following

expression sets the corresponding bits for the port. Finally, the

modified binary number is written back to the appropriate

register.

After these steps have been carried out, you can set the

speed. However, these steps are not strictly necessary because

you can also control the direction by the sign of the speed.

When stopping a motor, the speed is not necessarily required;

it suffices to set the mode to inactive and stop it either

passively or actively. This way, the speed is stored, and the

motor continues to move when activated. During passive

stopping, it coasts to a stop, whereas during active stopping, it

is brought to a stop as quickly as possible.

D. Servos

There are four different ports (0 - 3). In this case, there is an

eight-bit register for the states and a 16-bit register for each

angle. Only the four most significant bits are used for the

states, where one represents disabled and zero represents

enabled. The following expression can be used to set the states.

Afterwards, you can adjust the position, which is represented

by a value between 600 and 2400. If you apply this to the

typical angle range of 180 degrees, you'll find that 600

represents zero degrees, while 2400 represents 180 degrees.

VII. CONCLUSION

In conclusion, our investigation into SPI communication

between the Raspberry Pi and the Wombat controller's Shield

has provided crucial insights and configurations for seamless

integration. Utilizing tools such as the Analog Discovery, we

thoroughly analyzed the SPI protocol and its data transfer

mechanisms. This enabled us to understand the precise

signaling from start ('J') to finish ('S') bytes, including

structured register addressing for efficient program execution.

Understanding how SPI controls digital/analog ports, motors,

and servos has been instrumental. This knowledge clarifies

hardware interactions and enhances the utilization of Wombat

controller capabilities in Botball robots. By detailing protocols

for data reading and writing, as well as sensor and actuator

management, our study offers a solid groundwork for

developers and enthusiasts who may have wondered how the

communication functions.

VIII. ACKNOWLEDGEMENTS

The authors would like to thank Dipl.-Ing. Martin Novak and

the members of the Botball team for sharing their knowledge

and for their support in preparing this publication.

IX. REFERENCES

Referenced C++ library for control
https://github.com/kipr/libkovan

ret = bool(dig_ins_val & (1 << port))

if value:

 out |= (1 << port)

else:

 out &= ~(1 << port)

offset = 2 * port

modes &= ~(0x3 << offset)

modes |= (mode << offset)

offset = 2 * port

dirs &= ~(0x3 << offset)

dirs |= (dir << offset)

bit = 1 << (port + 4)

if not enabled:

 allStop |= bit

else:

 allStop &= ~bit

